服务项目 |
沙盘模型,油田模型,施工机械模型,地形沙盘模型 |
面向地区 |
数据以CSV格式存储,文件名规则:河名_站号_超警次数, 数据集,每一行一条记录,逗号分隔分别是:站号,时间,水位,警戒水位,警戒水位与水位的差值,按时间进行排序。 三. 建模思路 建立模型:指数合成方法:以统计期的数据合成指数构建权重,把每个监测点数据进行加权平均,形成河流指数。指数与站号的关系:通过相关性分析,计算每个站对于河流指数的影响程度。投影得分:把指数具体数值,投影到固定的取值区间,形成得分。 指数合成原则:水位变化越大,权重越大水位与警戒水位的差值越大,权重越大,大于0时为超警时间越近,权重越大 投影得分:以0米为100分,表示已经警戒水位。以-5米为60分,表示正常水位。以-10米为10分,表示河流干涸。大于100分,则可能要发大水。小于10分,则可能河流无水。 3.1 A江 以A江的5个监测站进行指数合成。 指数取值:小值1/4位数中位数平均值3/4位数大值-7.218-5.423-5.118-5.134-4.843-1.481 X轴:指数取值 Y轴:频次 A江5个站:A黑,B红,C绿,D深蓝, E浅蓝 指数:IDN紫色 X轴为:时间,从2015-11到2019-03。 Y轴为:警戒水位与水位的差值,大于0值为超警。 每个站点对整个河流的影响 A站(黑):1.2594088 B站(红):0.1961849 C站(绿): 0.1455854 D站(深蓝):1.4004896 E站(浅蓝):0.5610354 数值1为基准,大于1时,监测站对指数影响明显,小于1时对指数形象不明显。 结论:A站和D站河流影响比较大,如果A值或D值水位突然变化,那么河流会比较危险。 3.2 B江 以B江的6个监测站进行指数合成。 指数取值:小值1/4位数中位数平均值3/4位数大值-13.201-12.362-11.611-10.824-10.1212.607 B江6个站:A黑,B红,C绿,D深蓝, E浅蓝(干流水道),F紫色(干流水道) 指数:IDN黄色 X轴为:时间,从2015-11到2019-03。 Y轴为:警戒水位与水位的差值,大于0值为超警。 每个站点对整个河流的影响 A站(黑):1.4582460 B站(红):0.9518856 C站(绿): 1.0676259 D站(深蓝):0.5472059 E站(浅蓝):0.3465968 F站(紫色):0.2251052 数值1为基准,大于1时,监测站对指数影响明显,小于1时对指数形象不明显。 结论:A站和C站河流影响比较大,如果A值或C值水位突然变化,那么河流会比较危险。 该模型是我们探索性的尝试。用金融的方法去解决水利问题。这种尝试是知识迁移:把一个行业的知识迁移到另外一个行业去尝试解决问题。这种尝试有很大的创新性。后续我们会持续把金融行业的知识,迁移到水利行业和其他行业,希望做出突破性的变革和实际落地效果。 我们公司致力于解决这类跨行业的问题。我们公司具备跨学科知识能力,特别是在:国际贸易,进出口领域,区块链,金融及量化投资领域。我们具备扎实的底层知识构建能力。同时也有能力去把底层的知识在在我们擅长的领域做到,并同时在其他行业里做迁移。我们致力于把数据分析和数据科学在每个重要的,和国家生息相关的每个行业的进行落地。希望通过这个水利尝试案例,能让大家领略到数据分析,数据科学的无限魅力。
温州干红葡萄酒生产工艺透明模型_罗茨真空泵模型输送装置的主要组成部分是传送带或输送机,其主要作用是使待分拣商品贯通过控制装置、分类装置,并输送装置的两侧,一般要连接若干分拣道口,使分好类的商品滑下主输送机(或主传送带)以便进行后续作业。
分拣道口是已分拣商品脱离主输送机(或主传送带)进入集货区域的通道,一般由钢带、皮带、滚筒等组成滑道,使商品从主输送装置滑向集货站台,在那里由工作人员将该道口的所有商品集中后或是入库储存,或是组配装车并进行配送作业。
以上四部分装置通过计算机网络联结在一起,配合人工控制及相应的人工处理环节构成一个完整的自动分拣系统。
以新能源为主体意味着双高(高比例、高电力电子装备)特点明显,由于状态改变时序短、序列信号频域分布广、影响动态过程变量混杂,采用传统以固定参数为核心的静态模型对系统进行描述和求解比较困难,需建立适应大规模强随机性系统的仿真计算能力。三,快速协同。新型电力系统对快速协同能力提出了较高要求,随着电网上下游主体互动加强,电网管理工作内容和形式将发生频繁变化,需把握数据主线,通过提升企业数字化运营系统的灵活性和开放性,实现规划建设、物资供应、安全生产、资产财务等全链条感知和全面贯通,提升业务效率,进而促进管理变革。在常年观测归纳和演绎的基础上,电力行业积累了丰富经验、规则和知识,可描述电力基础设施外形结构、系统电气量状态变化、拓扑连接关系等,将这些知识融入人工智能算法模型,形成数据驱动、知识引导和物理建模的新型智能算法,并用知识表达来刻画数据所蕴含的规律,进而形机协同模式,这取决于构建涵盖电力系统海量多源数据、算法、应用的完整知识体系。数字电网知识表达体系新型电力系统高维、动态、不确定性给电网安全稳定运行带来挑战,传统方法难以完整刻画和实时掌控庞大的电力系统,相比之下,数字电网的多重知识表达,将推动新型电力系统可观、可测、可控成为现实。通过数字电网的多重知识表达,可提取物理电网的特征规律,描述物理电网设备的形态、系统运行的趋势、人-机-物三元空间的关联关系,实现对物理电网优的决策控制。在中国工程院院士潘云鹤提出的AI 2.0知识三种表达(知识的形象表达、知识的语言表达、知识的深度神经网络表达)的基础上,面向数字电网支撑的新型电力系统进行具象化丰富,多重知识表达主要有四种形式:数字电网知识的形象表达主要应用于描述物理电网设备的形态;数字电网知识的函数表达主要应用于描述电力系统电气量、非电气量各类数据的时序变化物理规律;数字电网知识的语言表达主要应用于描述电力系统人机物环的关联关系;数字电网知识的深度神经网络表达则作为一种有效的数据驱动工具,对上述三类应用实现补充和支撑,这样即可形成数据驱动、知识引导和物理建模相互统一的人工智能模型。
一、燃气-蒸汽联合循环发电机组模型系统参数:
1、电厂机组实训模拟设备:6×1.5×2米;
2、设备电源:220V.50HZ,功率500W。
3、主要材质:进口亚克力、铜质金属、多媒体系统;管道中工质灯光采用LED实现。本装置采用微型电机旋转模拟演示。
4、控制系统:32寸触控一体机
5、燃气-蒸汽联合循环发电机组模型主要设备:
燃气轮机、蒸汽轮机、发电机、余热锅炉四种主要设备组成了燃气—蒸汽联合循环发电系统模型,这四种设备的组合布置有多种方式,主要的分类方式是按轴系布置来分,一种是单轴布置方案,一种是多轴布置方案。